Problem 14

Suppose f is a function with the property that $|f(x)| \leq x^{2}$ for all x. Show that $f(0)=0$. Then show that $f^{\prime}(0)=0$.

Solution

Suppose that $|f(x)| \leq x^{2}$ for all x. Set $x=0$.

$$
\begin{gathered}
|f(0)| \leq 0^{2} \\
|f(0)| \leq 0 \\
-0 \leq f(0) \leq 0 \\
0 \leq f(0) \leq 0 \\
f(0)=0
\end{gathered}
$$

Now consider the derivative of f at $x=0$.

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)}{h}
\end{aligned}
$$

Take the absolute value of both sides.

$$
\left|f^{\prime}(0)\right|=\left|\lim _{h \rightarrow 0} \frac{f(h)}{h}\right|
$$

The absolute value function is continuous, so the limit may be brought outside.

$$
\begin{aligned}
\left|f^{\prime}(0)\right| & =\lim _{h \rightarrow 0}\left|\frac{f(h)}{h}\right| \\
& =\lim _{h \rightarrow 0} \frac{|f(h)|}{|h|}
\end{aligned}
$$

Use the fact that $|f(h)| \leq h^{2}$.

$$
\begin{aligned}
& \left|f^{\prime}(0)\right| \leq \lim _{h \rightarrow 0} 0 \\
& =\lim _{h \rightarrow 0} \frac{h^{2}}{|h|} \frac{|h||h|}{|h|} \\
& =\lim _{h \rightarrow 0}|h| \\
& =0
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\left|f^{\prime}(0)\right| \leq 0 \\
-0 \leq f^{\prime}(0) \leq 0 \\
0 \leq f^{\prime}(0) \leq 0 \\
f^{\prime}(0)=0 .
\end{gathered}
$$

